Mathematics

6.G Computing Volume Progression 3

Alignments to Content Standards: 6.G.A. 2

Task

A rectangular tank is 50 cm wide and 60 cm long. It can hold up to 126ℓ of water when full. If Amy fills $\frac{2}{3}$ of the tank as shown, find the height of the water in centimeters. (Recall that $1 \ell=1000 \mathrm{~cm}^{3}$.)

IM Commentary

This is the third in a series of four tasks that gradually build in complexity. The purpose of this series of tasks is to build in a natural way from accessible, concrete problems involving volume to a more abstract understanding of volume. Here, we are given the volume and are asked to find the height. In order to do this, students must know that 1 $\ell=1000 \mathrm{~cm}^{3}$. This fact may or may not need to be included in the problem, depending on students' familiarity with the units.

Mathematics

Solution

First, find the volume of tank in cubic centimeters:

$$
126 \ell \times \frac{1000 \mathrm{~cm}^{3}}{1 \ell}=126 \times 1000 \mathrm{~cm}^{3} .
$$

The height of tank is the volume divided by the length and the width:

$$
\frac{126 \times 1000}{50 \times 60}=42 \mathrm{~cm} .
$$

The height of water is $\frac{2}{3}$ the height of the tank:

$$
\frac{2}{3} \times 42=28 \text {. }
$$

So the height of the water is 28 cm .

