7.NS Why is a Negative Times a Negative Aluays Positive?

Task

Some people define 3×5 as $5+5+5$, which has a value of 15 .
a. If we use the same definition for multiplication, what should the value of $3 \times(-5)$ be?
b. Here is an example of the distributive property:

$$
3 \times(5+4)=3 \times 5+3 \times 4
$$

If the distributive property works for both positive and negative numbers, what expression would be equivalent to $3 \times(5+(-5))$?

If we use the fact that $5+(-5)=0$ and $3 \times 5=15$, what should the value of $3 \times(-5)$ be?
c. We can multiply positive numbers in any order:

$$
3 \times 5=5 \times 3
$$

Use what you know from parts (a) and (b). If we can multiply signed numbers in any order, what should the value of $(-5) \times 3$ be?

If the distributive property works for both positive and negative numbers, what expression would be equivalent to $(-5) \times(3+(-3))$?
d. Use what you know from parts (a), (b), and (c). What should the value of $(-5) \times(-3)$ be?

- Illustrative Mathematics
7.NS Why is a Negative Times a Negative Always Positive?
Typeset May 4, 2016 at 23:18:47. Licensed by Illustrative Mathematics under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

