

8.EE Raising to the zero and negative powers

Task

In this problem *c* represents a positive number.

The quotient rule for exponents says that if m and n are positive integers with m > n, then

$$\frac{c^m}{c^n} = c^{m-n}.$$

After explaining to yourself why this is true, complete the following exploration of the quotient rule when $m \le n$:

- a. What expression does the quotient rule provide for $\frac{c^m}{c^n}$ when m=n?
- b. If m = n, simplify $\frac{c^n}{c^n}$ without using the quotient rule.
- c. What do parts (a) and (b) above suggest is a good definition for c^0 ?
- d. What expression does the quotient rule provide for $\frac{c^0}{c^n}$?
- e. What expression do we get for $\frac{c^0}{c^n}$ if we use the value for c^0 found in part (c)?
- f. Using parts (d) and (e), propose a definition for the expression c^{-n} .

