## Depth of Knowledge Matrix - Elementary Math

| Topic | Adding 1-Digit Numbers (< 5) | Equality | Interpreting Data | Money |
| :---: | :---: | :---: | :---: | :---: |
| CCSS Stand. | - K.OA. 5 | - 1.OA. 7 | - 1.MD. 4 | - 2.MD. 8 |
| DOK 1 <br> Example | Solve. $3+1=$ | Determine whether the number sentence is true or false. $4+1=5-2$ | How many people were surveyed? | If you have 1 quarter, 4 dimes, 2 nickels, and 3 pennies, how many cents do you have? |
| DOK 2 Example | Use the digits 1 to 5 , at most one time each, to fill in the boxes to create two true number sentences. $\square$ $+$ $\square$ $=$ $\square$ | Use the digits 1 to 9 , at most one time each, to fill in the boxes to create two true number sentences. $\square$ $+$ $\square$ $=$ $\square$ ! $\square$ | Make a graph that shows a possible result of 7 students' favorite color. | Make 72ф in two different ways with either quarters, dimes, nickels, or pennies. |
| DOK 3 <br> Example | Use the digits 1 to 5 , at most one time each, to fill in the boxes to create a true number sentences with the greatest possible sum. $+$ $\square$ $=$ $\square$ | Use the digits 1 to 9 , at most one time each, to fill in the boxes to create a true number sentence with the greatest possible value. $\square$ $+$ $\square$ $=$ $\square$ - $\square$ | Make a graph that shows a possible result of 7 students' favorite color with red being the most popular color. | Make $72 \not \subset$ using exactly 9 coins that are either quarters, dimes, nickels, or pennies. |

## Depth of Knowledge Matrix - Elementary Math

\begin{tabular}{|c|c|c|c|c|}
\hline Topic \& Subtracting 3-Digit Numbers \& Operations with Time \& Comparing Fractions \& Multiplying Decimals \\
\hline CCSS Stand. \& - 3.NBT. 2 \& - 3.MD. 1 \& - 4.NF. 2 \& - 5.NBT. 7 \\
\hline \begin{tabular}{l}
DOK 1 \\
Example
\end{tabular} \& Solve.
\[
821-357=
\] \& What time will it be 14 minutes after 1:27 pm? \& Place a < or > between the two fractions to make a true number sentence.
\[
\begin{array}{ll}
\frac{4}{7} \& \frac{3}{5}
\end{array}
\] \& Solve.
\[
3.4 \times 2.5=
\] \\
\hline \begin{tabular}{l}
DOK 2 \\
Example
\end{tabular} \& Use the digits 1 to 9 , at most one time each, to fill in the boxes to make two different pairs of three-digit numbers that form a true number sentence.
\(\square\) -291= \(\square\) \& Use the digits 1 to 9 , at most one time each, to fill in the boxes to make a time that is 4:37 pm.
minutes after

pm \& Use the digits 1 to 9 , at most one time each, to fill in the boxes to create two different fractions: one that is less than one half and one that is more than one half.

$$
\frac{\square}{\square}<\frac{1}{2} \text { and } \frac{\square}{\square}>\frac{1}{2}
$$ \& Use the digits 1 to 9 , at most one time each, to fill in the boxes to make a true number sentence.

$\times 3.2=$ 1.
$\square$
$\square$ <br>

\hline | DOK 3 |
| :--- |
| Example | \& Use the digits 1 to 9 , at most one time each, to fill in the boxes to make a difference that is as close to 329 as possible.

$\square$ - $\square$ $=$ \& Use the digits 1 to 9 , at most one time each, to fill in the boxes to make the latest possible time.
minutes after

pm \& Use the digits 1 to 9 , at most one time each, to fill in the boxes to create a fraction that is as close to $5 / 11$ as possible. \& Use the digits 1 to 9 , at most one time each, so that the product is as close to 50 as possible. <br>
\hline
\end{tabular}

```
More free DOK 2 \& 3 problems available at openmiddle.com
```

(c) 2017 Robert Kaplinsky, robertkaplinsky.com

